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We have calculated optimal frequency scaling factors for the B3LYP/ 6-311+G(d,p) method for fundamental
vibrational frequencies on the basis of a set of 125 molecules. Using the new scaling factor, the vibrational
frequencies calculated with the triple-ú basis set 6-311+G(d,p) give significantly better accuracy than those
calculated with the double-ú 6-31G(d) basis set. Scale factors were also determined for low-frequency vibrations
using the molecular set of 125 molecules and for zero-point energies using a smaller set of 40 molecules. We
have studied the effect on the calculated vibrational frequencies for various combinations of diffuse and
polarization functions added to the triple-ú 6-311G basis set. The 6-311+G(d,p) basis set is found to give
almost converged frequencies for most molecules, and we conclude that our optimum scaling factors are
valid for the basis sets 6-311G(d,p) to 6-311++G(3df,3pd). The new scale factors are 0.9679 for vibrational
frequencies, 1.0100 for low-frequency vibrations, and 0.9877 for zero-point vibrational energies.

Introduction

With the current speed of standard desktop computers and
the advent of commercial quantum-chemical programs, it is a
rather straightforward procedure even for experimentalists to
calculate, for example, vibrational frequencies and use them to
aid in interpretation of experimental results. A theoretical
quantum-chemical method most widely used today is density
functional theory (DFT). For investigations of ground-state
properties in strongly bound systems, DFT combines accuracy
with computational speed and ease of use. This is particularly
true for hybrid DFT methods, which consistently have been
shown to be highly reliable. Of all hybrid DFT methods, the
B3LYP functional is the most widely used.1 It is most often
combined with the basis set 6-31G(d), and it has been used for
almost a decade with consistently good results.1 Since the mid-
nineties, however, computer power has increased by more than
an order of magnitude, making the use of a more accurate but
calculationally more expensive method feasible. We will
demonstrate that increasing the basis set from the double-ú basis
set 6-31G(d) to the triple-ú basis set 6-311+G(d,p) results in a
higher accuracy for the calculated vibrational frequencies.

While being successful for many problems, the absence of
long-range correlation in density functionals makes DFT
methods inadequate to describe weakly bound systems, see, for
example, ref 2 and references therein, for a discussion. Attempts
to combine multiconfigurational wave functions with density
functionals are also less successful.3 Finally, for electronically
excited states, DFT-based studies are still not straightforward,
see, for example, ref 4, for a discussion.

The anharmonicity of the fundamental frequencies is most
often taken into account by scaling the calculated harmonic
frequencies, and this procedure has been found to work well
since the overestimation of vibrational frequencies is fairly
uniform. Although it is now possible to calculate the anharmo-
nicities through second-order perturbation theory with com-
mercial programs such as GAUSSIAN 03,5 this is still prohibi-

tive for larger molecules and the accuracy is similar to that
achieved through scaling. A more detailed description is
generally needed only when anharmonic resonances are impor-
tant, see, for example, ref 6. We have, however, showed that
alternatively these couplings can be included phenomenologi-
cally.7,8 In the present work we calculate optimum scale factors
to be used for scaling the harmonic frequencies for the B3LYP/
6-311+G(d,p) method. We determine three different scale
factors to be used for vibrational frequencies, low-frequency
vibrations, and zero-point vibrational energies, respectively.

Calculations
Optimizing the Scale Factors.
The scale factorλ to use was determined by making a least-

squares fit of the scaled harmonic frequencies to the experi-
mental fundamentals, i.e., minimizing the following sum:

whereN is the number of frequencies included in the optimiza-
tion. The root-mean-square (RMS) error is hence

In this minimization procedure, the high-frequency vibrations
tend to dominate the RMS and consequently the scale factor.
For some applications, such as statistical thermodynamics and
calculations of enthalpies and entropies, the low-frequency
vibrations are much more important and the use of another scale
factor is appropriate. Following Scott and Radom,1 we also made
a least-squares fit of the scaled inverse harmonic frequencies
to the inverse fundamental frequencies, that is, minimized the
following sum:
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The RMS is again calculated using eq 2 with∆ taken from eq
3 above. With this minimization scheme, the sum and RMS
error are dominated by the lowest frequencies.

When determining the frequency scale factor to use for zero-
point energies, we have made a least-squares fit of scaled
calculated zero-point energies to experimental zero-point ener-
gies analogously to eq 1. For a more detailed description of the
procedures, see ref 1.

Quantum-Chemical Calculations.
We have used the Gaussian 03W5 and the method B3LYP

in order to perform geometry optimizations and frequency
calculations on a large set of molecules. The default pruned
grid was used in all calculations since the effect of increasing
the integration grid has been shown to be very small for
vibrational frequecies.1 All optimizations were performed with
default cutoffs.

To investigate the effect of diffuse and polarization functions
on the vibrational frequencies, we made frequency calculations
for a small set of 29 molecules (taken from ref 9, excluding

LiH and LiF). This was made for the 6-311G basis set with
various key combinations of diffuse and polarization functions
added, and we then determined the optimum scale factor and root-
-mean-square (RMS) error for each of the basis sets investigated.
The scale factors and RMS errors are collected in Table 1, and
frequency variations for some of the molecules in the set as
compared to the “full” basis set 6-311++G(3df,3pd) are shown
in Figures 1-3. Since these scaling factors and RMS errors are
only to be compared internally, a smaller set of molecules is
chosen in order to reduce the number of computations. This
strategy is based on the assumption that the trends are well des-
cribed by this smaller set of molecules, which should be true
considering that it contains several different functional groups.

A larger set of molecules consisting of 125 molecules (950
frequencies), taken from Shimanouchi10,11 and Johnson et al.,9

was used for determining the optimum scale factors for the
6-311+G(d,p) basis set for frequencies and inverse frequencies.
The molecules chosen have a maximum of four heavy atoms
(non-H) and no more than 10 atoms in total. No molecules with
atoms from the third row or higher in the periodic table were
included, and only one isotopomer of each molecule has been
included.

When determining the scaling factor for zero-point energies
we used a set of 40 molecules which consisted of diatomics
from the atomization energies of Table 3 in ref 12 and the
molecules in Table 1 in the work of Grev and Janssen13 (again
excluding LiH and LiF). Forty was the number of molecules
for which experimentally determined zero-point vibrational
energies were available. Experimental zero-point vibrational
energies for the diatomics were taken from Herzberg,14 using
standard equations for calculating zero-point energy including
anharmonicity, see, for example, ref 1. All other data are taken
from Table 1 in Grev and Janssen.13 These data come from the
following sources: singlet and triplet CH2 from Jensen and
Bunker,15 CH4 from Gray and Robiette,16 CH3Cl from Duncan
and Law,17 H2O, H2S, HCO, C2H4, and H2CO from Clabo et
al.,18 and HCN, CO2, and C2H2 from Allen et al.19

TABLE 1: Optimized Scale Factors for the 6-311G Basis
Set with Various Polarization and Diffuse Functions Addeda

diffuse and polarization
functions added to the

6-311G basis set

optimized scale factor
for the reduced

molecular set of ref 9 RMS error

0.9737 95
+ 0.9738 99
++ 0.9742 98
d 0.9623 40
d,p 0.9619 33
+ d,p 0.9613 33
+ df,p 0.9608 35
+ 2d,p 0.9618 31
+ 3d,p 0.9612 32
+ 3df,p 0.9609 32
++ 3df,3pd 0.9604 32

a The reduced set of Johnson, Gill and Pople from ref 9 was used.

Figure 1. Variation of calculated vibrational frequencies with respect to addition of diffuse functions and polarization functions for H3CCH3. All
frequencies are compared to the “full” basis set 6-311++G(3df,3pd). CH deformations are drawn as dotted lines, CH stretch modes are drawn as
full lines, and the CC stretch is drawn as a full, bold gray line.
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Results and Discussion

The accuracy of the calculated frequencies depends on the
size and quality of the chosen basis set. This is important since,
in general, quantum-chemical calculations are a compromise
between accuracy and computational time. Figures 1-3 show
how the vibrational frequencies vary with basis set for the mole-
cules H3CCH3, CH3OH, and H2O. The data indicate that con-
vergence of the vibrational frequencies with respect to addition
of diffuse and polarization functions is generally met already at

the 6-311G(d,p) level (changee ∼10 cm-1). An example can be
seen for CH3CH3 in Figure 1. For molecules with hydrogen
atoms and significant negative charge (e.g., H2CO, HCN, HCO,
and CH3OH, Figure 2), a diffuse function on heavy atoms (basis
set 6-311+G(d,p)) is required in order to reach convergence;
for some more difficult cases (e.g., H2O, Figure 3, and H2NNH2),
a second polarization function is also needed (6-311+G(2d,p)).

We have also investigated how different types of modes
behave differently when the basis set is changed. This was done

Figure 2. Variation of calculated vibrational frequencies with respect to addition of diffuse functions and polarization functions for CH3OH. All
frequencies are compared to the “full” basis set 6-311++G(3df,3pd). CH deformations and the OH deformation are drawn as dotted lines, CH
stretch modes are drawn as full lines, the CO stretch is drawn as a full, bold gray line, and the OH stretch is drawn as a long-dashed line.

Figure 3. Variation of calculated vibrational frequencies with respect to addition of diffuse functions and polarization functions for H2O. All
frequencies are compared to the “full” basis set 6-311++G(3df,3pd). The OH deformation is drawn as a dotted line, and the OH stretch modes are
drawn as long-dashed lines.
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for the 12 molecules: CN, CO, H2O, CH3CH3, CH2CH2, CHCH,
CH3OH, NH2NH2, CH2O, HCO, HCN, and H2CO. Figures 1-3
show CH3CH3, CH3OH, and H2O, respectively. The others are
available as supplemental information. Without any polarization
functions, CH deformation vibrations are too high. CH stretches
are slightly too low for X-CH molecules when X) C or H
and too high when X) O or N. CO and CN stretch vibrations
are too low, whereas CC and NN stretches are about right. OH
stretch vibrations are much too low, whereas NH stretches are
too high. There is much less dependence on diffuse functions
for all the different modes. One should keep in mind that this
is only a very limited set of molecules and that the trends might
not be quite as general for a larger set of molecules.

That convergence is generally met at the 6-311G(d,p) level
is also evident from the scale factors and RMS values in Table
1, which are essentially the same for 6-311G(d,p) and all larger
basis sets investigated. Due to the almost equal scale factors,
we have chosen to calculate a single scaling factor to be used
for all those basis sets. Importantly the scale factors in Table 1
are evaluated for a limited data set only and calculated in order
to be compared to each other. We have chosen to calculate a
single accurate scale factor for the 6-311+G(d,p) basis set due
to its slightly higher accuracy than 6-311G(d,p) when investigat-
ing molecules with significant negative charge.

Another reason for choosing this basis set is that its scaling
factor lies between the maximum (6-311G(d,p)) and minimum
(6-311++G(3df,3pd)) scaling factors in Table 1 for the relevant
basis sets. By using the accurate scale factor determined for
6-311+G(d,p) for all basis sets 6-311(d,p) and larger, we
introduce a systematic error. We can estimate the error of the
approximation from the spread in scaling factors for these basis
sets from Table 1. The total spread of scaling factors is 0.0015
with the scaling factor for the 6-311+G(d,p) in the middle of
the interval resulting in an error of about(3 cm-1 for a CH
stretch mode. The deviation resulting from this approximation
is, as mentioned, systematic but very small.

The scale factor for the 6-311+G(d,p) basis set when
optimized with eq 1 for the large set of 125 molecules (950
frequencies) was 0.9679, and the RMS error was 37 cm-1. The
old scale factor 0.9614, as determined for the 6-31G(d) basis
set, lies outside the 99% confidence interval for our new scaling
factor. The new scaling factor 0.9679 should therefore be used
for basis sets 6-311G(d,p) or larger. The RMS error is very
similar to what Scott and Radom1 achieved, even though our

accuracy is much higher (Table 2). This is as expected since
RMS errors are dominated by a few large deviations.

In Table 2, the spread of relative errors is shown for the
B3LYP/6-311+G(d,p) method and the results are compared to
the most widely used method B3LYP/ 6-31G(d) and the best
method from Scott and Radom1 B3PW91/6-31G(d). There is a
dramatic increase in accuracy of the calculations upon using a
large-enough triple-ú basis set. Of the scaled calculated frequen-
cies, 93.4% are within 2% of the experimental fundamental.
This is to be compared to 57.5% for B3LYP/6-31G(d) and
69.6% for B3PW91/6-31G(d). The much higher accuracy clearly
shows that whenever computer power is available the 6-311G-
(d,p) (or higher) basis set should be used instead of the standard
6-31G(d), when calculating vibrational properties.

The scale factor for low-frequency vibrations was also
calculated, and a few methyl rotations dominated the RMS
value, as was also observed by Scott and Radom.1 Following
the scheme by Scott and Radom,1 three such frequencies were
removed (resulting in a set of 947 frequencies). Upon reopti-
mization the RMS error dropped by more than 30%. The scale
factor obtained without these frequencies is 1.0100, and the
RMS error is 11× 10-5 cm-1. Again, the old scale factor 1.0013
for the 6-31G(d) basis set lies outside the 99% confidence
interval for our new scaling factor. Again, we recommend a
change of scale factor for use with basis sets 6-311G(d,p) and
higher. The RMS error is again in the same range as that of
Scott and Radom.1

The optimum scale factor for zero-point vibrational energies
was found to be 0.9877 and the RMS error 0.36 kJ/mol. The
scaling factor 0.9806 determined for the 6-31G(d) basis set lies
outside an 80% confidence interval for our new scale factor.
The difference is significant enough that our new scaling factor
should be used for 6-311G(d,p) and larger basis sets. In
particular, this is true since both scale factors have been
determined using almost the same set of molecules. Again, the
RMS error is similar to that of Scott and Radom.1 All optimum
scale factors are summarized in Table 3 for convenience.

Summary

We have determined new frequency scaling factors for
fundamental frequencies calculated with the method B3LYP/
6-311+G(d,p) using least-squares fitting to a large molecular
set of 125 molecules (950 fundamental frequencies). Investiga-
tions for a limited set of molecules show that the same scaling
factors can give a very good approximation to be used for the
basis sets 6-311G(d,p) up to 6-311++G(3df,3pd), since most
vibrational frequencies change very little upon adding diffuse
functions or more polarization functions to the 6-311G(d,p) basis
set. We also show that the 6-311G(d,p) basis set (or larger) is
superior to the double-ú basis set 6-31G(d) when calculating
vibrational properties. The accuracy of the scaled vibrational
frequencies is much higher for the former (93.4% of the
calculated frequencies have errors<2% as compared to 57.5%
for 6-31G(d)). Using the large molecular set of 125 molecules
we calculated a scale factor for low-frequency vibrations, while

TABLE 2: Percentage of Scaled Theoretical Frequencies
That Lie within Specified Error Ranges When Compared
with Experimental Fundamentals

% error
B3LYP

6-311+G(d,p)
B3LYP

6-31G(d)a
B3PW91
6-31G(d)a

0-2 93.4 57.5 69.6
2-4 4.0 18.1 16.8
4-6 1.3 10.2 4.0
6-8 0.3 5.3 4.2
8-10 0.2 3.2 1.7
10-12 0.2 2.3 0.6
12-14 0.2 1.1 1.0
14-16 0.0 0.8 0.2
16-18 0.1 0.5 0.0
18-20 0.1 0.1 0.2
20-22 0.0 0.0 0.4
22-24 0.0 0.1 0.2
24-26 0.0 0.1 0.2
26-28 0.1 0.1 0.0
28-30 0.0 0.0 0.0
>30 0.1 0.6 0.8

a From ref 9.

TABLE 3: Recommended Scale Factors To Use with the
B3LYP Method for the Basis Sets 6-311G(d,p) up to
6-311++G(3df,3pd) for Calculation of Fundamental
Frequencies, Low-Frequency Vibrations, and Zero-Point
Vibrational Energies (ZPVE)

level of theory ω 1/ω ZPVE

B3LYP/6-311+G(d,p) 0.9679 1.0100 0.9877
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a set of 40 molecules was used to calculated a zero-point
vibrational energy scale factor.
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